Biofortification of waterleaf (Talinum triangulare) seedlings with zinc and its benefits to growth and development

Keywords: Agronomic biofortification, Mineral nutrition, leafy vegetable

Abstract

Zinc (Zn) is an important micronutrient in the metabolic processes of plants and animals, and its deficiency in humans can cause several physiological disorders. One way to increase the availability of this nutrient is through the biofortification technique. The waterleaf (Talinum triangulare (Jacq.) Willd) is a vegetable that has great potential for biofortification, since it is consumed and cultivated in several countries. Thus, the aim of this work is to analyze the benefits of zinc biofortification to the growth and development of T. triangulare seedlings. Six Zn concentrations were applied via soil: T1 - control; T2 - 12.5 mg kg-1; T3 - 25 mg kg-1; T4: - 50 mg kg-1; T5 - 100 mg kg-1; and T6 - 200 mg kg-1. The variables analyzed were: length, number of mature and new leaves, buds, dry leaf mass, stem, root, aerial and total part, in addition to the root/aerial part ratio, relative growth rate and zinc and manganese contents. The T6 provided an increase of 284% in zinc and a reduction of 23.97% in manganese compared to T1. Growth and development variables were not significantly affected by different doses of Zn. The T5 and T6 proved to be the most suitable for the biofortification of the species, however additional studies are necessary.

Downloads

Download data is not yet available.

Author Biographies

Beatriz Costa de Oliveira Queiroz de Souza, Universidade Federal do Oeste do Pará-UFOPA

Interdisciplinary Bachelor in Water Sciences and Technology and undergraduate student in the Bachelor of Biological Sciences at the Federal University of Western Pará. PIBITI fellow by CNPq and intern at the Laboratory of Plant Physiology and Plant Growth. She works in the field of vegetable biofortification, having experience in the field of ethnobotany and mycorrhizal interactions.

Geysa Manuelle Figueira da Silva, Universidade Federal do Oeste do Pará - UFOPA

Bachelor of Biological Sciences and Water Sciences and Technology. Collaborator of the Laboratory of Plant Physiology and Plant Growth at the Federal University of Western Pará. She works with osmotic conditioning of seeds and has experience in biofortification of vegetables and mycorrhizal interactions.

Ivan Alves dos Santos Júnior, Universidade Federal do Oeste do Pará - UFOPA

Master in Biosciences, Bachelor in Biological Sciences (2019) and Graduated in Interdisciplinary Bachelor in Water Sciences and Technology (2016) from the Federal University of Western Pará - UFOPA. He has experience in the area of Environmental Sciences, Limnology, Water Quality, Plant Physiology, Biochemistry and Herpetology.

Haroldo Sá Miranda Júnior, Universidade Federal do Oeste do Pará - UFOPA

Graduating from the Bachelor of Agronomy and intern at the Laboratory of Plant Physiology and Plant Growth at the Federal University of Western Pará. He works with mycorrhizae and has experience in vegetable biofortification, agricultural mechanization and geoprocessing,

Marcos Diones Ferreira Santana, Universidade Federal do Oeste do Pará - UFOPA

Graduated in Biological Sciences at the Federal University of Pará (UFPA), Master in Botany (Applied Botany / Mycology) by the National Institute for Research in the Amazon (INPA) and PhD in Biodiversity and Biotechnology at Rede Bionorte (Museu Goeldi / UFPA). He is currently a server at the Federal University of Oste do Pará (UFOPA), where he studies the diversity, ecology and potential of mycorrhizal fungi; diversity, ecology and biotechnological potential of mushrooms from the western region of Pará and collaborates with the curatorship of the fungi collection at the HSTM-UFOPA Herbarium.

Túlio Silva Lara, Universidade Federal do Oeste do Pará - UFOPA

Professor of the Bachelor's Degree in Biological Sciences and coordinator of the Laboratory of Plant Physiology and Plant Growth at the Federal University of Western Pará. He has experience in osmotic conditioning of seeds, biofortification of vegetables and cereals and mycorrhiza.

References

ADAMCZYK-SZABELA, D.; LISOWSKA, K.; ROMANOWSKA-DUDA, Z.; WOLF, W. M. Combined cadmium-zinc interactions alter manganese, lead, copper uptake by Melissa officinalis. Scientific Reports, v. 10, n. 1, e1675, 2020. https://doi.org/10.1038/s41598-020-58491-9

ALEXANDRE, E. C. F.; ANDRADE, J. W. S.; JAKELAITIS, A.; PEREIRA, L. S.; SOUZA, G. D.; OLIVEIRA, G. S. Composição mineral e bromatológica de Talinum triangulare (Jacq.) Willd cultivada sob sombreamento. Revista Brasileira de Agropecuária Sustentável, v. 8, n. 2, p. 40-51, 2018. https://doi.org/10.21206/rbas.v8i2.491

ARAÚJO, F. S.; SILVA FILHO, D. F.; SOUZA, L. A. G. Cultivo do cariru (Talinum triangulare (Jack.) Willd.), em sistema de produção hidropônico flutuante. In: SOUZA, L. A. G.; BENAVENTE, C. A. T.; NODA, H. (Eds.) Ciência e Tecnologia aplicada aos agroecossistemas da Amazônia Central. Manaus: Editora INPA, 2018. p. 45-58.

BABAJANI, A.; IRANBAKHSH, A.; ARDEBILI, Z. O.; ESLAM, B. Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environmental Science and Pollution Research, v. 26, n. 1, p. 24430–24444, 2019. https://doi.org/10.1007/s11356-019-05676-z

BROADLEY, M. R.; BROWN, P.; CAKMAK, I.; RENGEL, Z.; ZHAO, F. Function of nutrients: micronutrients. In: MARSCHNER, P. (Ed.) Marschner's mineral nutrition of higher plants. 3 ed. London: Academic Press, 2012. p. 191-248.

CAKMAK, I.; MCLAUGHLIN, M. J.; WHITE, P. Zinc for better crop production and human health. Plant Soil, v. 411, n. 1, p 1-4, 2017. https://doi.org/10.1007/s11104-016-3166-9

DAS, S. K.; AVASTHE, R. K.; SINGH, M.; DUTTA, S. K.; ROY, A. Zinc in plant-soil system and management strategy. Agrica, v. 7, n. 1, p. 1-6, 2018. http://dx.doi.org/10.5958/2394-448X.2018.00001.9

DAVIES, P. J. Plant Hormones: biosynthesis, signal transduction, action. Dordrecht: Kluwer Academic Publishers, 2004. 750p.

DHHS (Department of Health and Human Services) & DOF (Department of Agriculture). Dietary Guidelines for Americans. Washington: Government Printing Office, 2005. 84p.

FASUYI, A. O. Bio-nutritional evaluations of three tropical leaf vegetables (Telfairia occidentalis, Amaranthus cruentus and Talinum triangulare) as sole dietary protein sources in rat assay. Food Chemistry, v. 103, n. 3, p. 757-765, 2007. https://doi.org/10.1016/j.foodchem.2006.09.030

GRACIANO, P. D.; JACINTO, A. C. P.; SILVEIRA, A. J.; CASTOLDI, R.; LIMA, T. M.; CHARLO, H. C. O.; SILVA, I. G.; MARIN, M. V. Agronomic biofortification with zinc in curly lettuce cultivars. Revista Brasileira de Ciências Agrárias, v.15, n. 4, e8456, 2020. https://doi.org/10.5039/agraria.v15i4a8456

HAIDER, M. U.; FAROOQ, M.; NAWAZ, A.; HUSSAIN, M. Foliage applied zinc ensures better growth, yield and grain biofortification of Mungbean. International Journal of Agriculture & Biology, v. 20, n. 12, p. 2817‒2822, 2018. DOI: 10.17957/IJAB/15.0840

HUNT, R. Plant growth curves: the functional approach to plant growth analysis. London: Edward Arnold, 1982. 248p.

JOMOVA, K.; VALKO, M. Advances in metal-induced oxidative stress and human disease. Toxicology, v. 283, n. 2/3, p. 65-87, 2011. https://doi.org/10.1016/j.tox.2011.03.001

LIMA, P. M.; VIEIRA, J. C. S.; CAVECCI-MENDONÇA, B.; FLEURI, L. F.; LEITE, A. L.; BUZALAF, M. A. R.; PEZZATO, L. E.; BRAGA, C. P.; PADILHA, P. M. Identification of zinc absorption biomarkers in muscle tissue of Nile Tilapia fed with organic and inorganic sources of zinc using metallomics analysis. Biological Trace Element Research, v. 1, n. 1, p. 1-14, 2019. https://doi.org/10.1007/s12011-019-01765-9

MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. Avaliação do estado nutricional das plantas: princípios e aplicações. Piracicaba: POTAFÓS, 1997. 319p.

MANHÃES, L. R. T.; MARQUES, M. M.; SABAA-SRUR, A. U. O. Composição química e do conteúdo de energia do cariru (Talinum esculentum Jacq.). Acta Amazonica, v. 38, n. 2, p. 307-310. 2008. https://doi.org/10.1590/S0044-59672008000200013

MUTHAYYA, S.; RAH, J. H.; SUGIMOTO, J. D. ROOS, F.; KRAEMER, K.; BLACK, R. The global hidden hunger indices and maps: an advocacy tool for action. PLoS One, v. 8, n. 6, p. 1-12, 2013. http://doi.org./10.1371/journal.pone.0067860

ORTEGA, A. E.; MALAVOLTA, E. Los más recientes micronutrientes vegetales. Informaciones Agronómicas de Hispanoamérica, v. 7, n. 1, p. 16-25, 2012.

SAGO, Y.; WATANABE, N.; MINAMI, Y. Zinc biofortification of hydroponic baby leaf lettuce grown under artificial lighting with elevated wind speed and root zone temperature. Journal of Agricultural Meteorology, v. 74, n. 4, p. 173-177, 2018. https://doi.org/10.2480/agrmet.D-17-00048

SALIMI, A.; ARDEBILI, Z. O.; SALEHIBAKHSH, M. Potential benefits of foliar application of chitosan and Zinc in tomato. Iranian Journal of Plant Physiology, v. 9, n. 2, p. 2703-2708, 2019. https://doi.org/10.22034/IJPP.2019.664574

SILVA, L. E. S.; CLARO, R. M. Tendências temporais do consume de frutas e hortaliças entre adultos nas capitais brasileiras e Distrito Federal, 2008-2016. Cadernos de Saúde Pública, v. 35, n. 5, e00023618, 2019. https://doi.org/10.1590/0102-311x00023618

VELU, G.; ORTIZ-MONASTERIO, I.; CAKMAK, I.; HAO, Y.; SINGH, R. P. Biofortification strategies to increase grain zinc and iron concentrations in wheat. Journal of Cereal Science, v. 59, n. 1, p. 365-372, 2014. https://doi.org/10.1016/j.jcs.2013.09.001

WHITE, P. J.; BROWN, P. H. Plant nutrition for sustainable development and global health. Annals of Botany, v. 105, n. 1, p. 1073-1080, 2010. https://doi.org/10.1093/aob/mcq085

WHITE, P. J.; PONGRAC, P.; SNEDDON, C. C.; THOMPSON, J. A.; WRIGHT, G. Limits to the biofortification of leafy Brassicas with zinc. Agriculture, v. 8, n. 32, p. 1-14, 2018. https://doi.org/10.3390/agriculture8030032

Published
2021-05-05
Section
Scientific Articles